Regular random sections of convex bodies and the random Quotient-of-Subspace Theorem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorics of random processes and sections of convex bodies

We find a sharp combinatorial bound for the metric entropy of sets in R and general classes of functions. This solves two basic combinatorial conjectures on the empirical processes. 1. A class of functions satisfies the uniform Central Limit Theorem if the square root of its combinatorial dimension is integrable. 2. The uniform entropy is equivalent to the combinatorial dimension under minimal ...

متن کامل

High Dimensional Random Sections of Isotropic Convex Bodies

We study two properties of random high dimensional sections of convex bodies. In the first part of the paper we estimate the central section function |K ∩F⊥| n−k for random F ∈ Gn,k and K ⊂ R n a centrally symmetric isotropic convex body. This partially answers a question raised by V. Milman and A. Pajor (see [MP], p.88). In the second part we show that every symmetric convex body has random hi...

متن کامل

Random Points, Convex Bodies, Lattices

Assume K is a convex body in R, and X is a (large) finite subset of K. How many convex polytopes are there whose vertices come from X? What is the typical shape of such a polytope? How well the largest such polytope (which is actually convX) approximates K? We are interested in these questions mainly in two cases. The first is when X is a random sample of n uniform, independent points from K an...

متن کامل

Random Aspects of High-dimensional Convex Bodies

In this paper we study geometry of compact, not necessarily centrally symmetric, convex bodies in R. Over the years, local theory of Banach spaces developed many sophisticated methods to study centrally symmetric convex bodies; and already some time ago it became clear that many results, if valid for arbitrary convex bodies, may be of interest in other areas of mathematics. In recent years many...

متن کامل

Random Polytopes, Convex Bodies, and Approximation

Assume K ⊂ R is a convex body and Xn ⊂ K is a random sample of n uniform, independent points from K. The convex hull of Xn is a convex polytope Kn called random polytope inscribed in K. We are going to investigate various properties of this polytope: for instance how well it approximates K, or how many vertices and facets it has. It turns out that Kn is very close to the so called floating body...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2021

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2021.109133